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Abstract

We consider the problem of clustering graph nodes over
large-scale dynamic graphs, such as citation networks, im-
ages and web networks, when graph updates such as
node/edge insertions/deletions are observed distributively.
We propose communication-efficient algorithms for two
well-established communication models namely the message
passing and the blackboard models. Given a graph with n
nodes that is observed at s remote sites over time [1, t], the
two proposed algorithms have communication costs Õ(ns)

and Õ(n + s) (Õ hides a polylogarithmic factor), almost
matching their lower bounds, Ω(ns) and Ω(n + s), respec-
tively, in the message passing and the blackboard models.
More importantly, we prove that at each time point in [1, t]
our algorithms generate clustering quality nearly as good as
that of centralizing all updates up to that time and then ap-
plying a standard centralized clustering algorithm. We con-
ducted extensive experiments on both synthetic and real-life
datasets which confirmed the communication efficiency of
our approach over baseline algorithms while achieving com-
parable clustering results.

1 Introduction
Graph clustering is one of the most fundamental tasks in
artificial intelligence and machine learning (Giatsidis et
al. 2014; Tian et al. 2014; Anagnostopoulos et al. 2016).
Given a graph consisting of a node set and an edge set,
graph clustering asks to partition graph nodes into clus-
ters such that nodes within the same cluster are “densely-
connected” by graph edges, while nodes in different clus-
ters are “loosely-connected”. Graph clustering on modern
large-scale graphs imposes high computational and storage
requirements, which are too expensive, if not impossible, to
obtain from a single machine. In contrast, distributed com-
puting clusters and server storages are a popular and cheap
way to meet the requirements. Distributed graph clustering
has received considerable research interests (Hui et al. 2007;
Yang and Xu 2015; Chen et al. 2016; Sun and Zanetti 2017).
However, the dynamic nature of modern graphs makes the
clustering problem even more challenging. We discuss sev-
eral motivational examples and their characteristics as fol-
lows.
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Figure 1: Illustration of distributed dynamic graph clustering.
Thick edges have an edge weight 3 while thin edges have an edge
weight 1. Clustering results are evolving over time.

Citation Networks. Graph clustering on citation networks
aims to generate groups of papers/manuscripts/patents with
many similar citations. This implies that the authors within
each cluster share similar research interests. The clustering
results can be useful for recommending research collabo-
ration, e.g. in ResearchGate. Large-scale citation networks,
e.g. the US patent citation network (1963-1999)1, contain
millions of patents and tens of millions of citations, and they
are dynamic with frequent insertions. New papers are pub-
lished everyday with new citations to be added to the net-
work graph. Citation networks usually have negligible dele-
tions because very few works get revoked.
Large Images. Image segmentation is a fundamental task in
computer vision (Arbelaez et al. 2011). Graph-based image
segmentation has been studied extensively (Shi and Malik
2000; Maier, Luxburg, and Hein 2009; Kim et al. 2011).
In these methods, each pixel is mapped into a node in a
high-dimensional space (considering coordinates and inten-
sity) that then connects to its K-nearest nodes. In many
applications such as in astronomy and microscopy, high-
resolution images are captured with an extremely large size,
up to gigapixels. Segmentation of these images usually re-
quires pipelining, such as with deblurring as a preprocess-
ing, so new pixels could be added for image segmentation
over time. Similar to citation networks, no pixels and their
edges would be deleted once they are inserted into the im-
ages.
Web Graphs. In a web graph with web pages as nodes
and hyperlinks between pages as edges, web pages within

1https://snap.stanford.edu/data/cit-Patents.html



the same community are usually densely-connected. Clus-
tering results on a web graph can be helpful for eliminat-
ing duplicates and recommending related pages. There have
been over 46 billion web pages on the WWW until July,
2018 (Worldwidewebsize 2018), and its size grows fast as
new web pages have been constantly crawled over time. The
deletions of web pages are much less frequent and more dif-
ficult to discover than insertions. In some cases, deleted web
pages are still kept in Web graphs for analytic purposes.

All these examples require effective ways to clustering
over large-scale dynamic graphs, when node/edge inser-
tions/deletions are observed distributively and over time.
For notation convenience, we assume that we know an es-
timated total number of nodes in the graphs, and then node
insertions and deletions are treated as insertions/deletions
of its edges. Since deletions seldom happen, we first only
consider node/edge insertions, and then discuss how to in-
clude a small number of deletions in detail. Formally, there
are s distributed remote sites S1, · · · , Ss and a coordina-
tor. At each time point τ ∈ [1, t], each of these sites ob-
serves a graph update stream Êτi , defining the local graph
Gτi (V,Eτi = ∪τj=1Ê

j
i ) observed up to the time point τ , and

these sites corporate with the coordinator to generate graph
clustering over the global graph Gτ (V,Eτ = ∪si=1E

τ
i ). For

simplicity, edge weights cannot be updated but an edge can
be observed at different sites. We illustrate the problem by
an example in Fig. 1.

For distributed systems, communication costs are one of
the major performance measures we aim to optimize. In
this paper, we consider two well-established communication
models in multi-party communication literature (Phillips,
Verbin, and Zhang 2016), namely the message passing and
the blackboard models. In the former model, there is a com-
munication channel between each of the s remote sites and
a distinguished coordinator. Each site can send a message
to another site by first sending to the coordinator, who then
forwards the message to the destination. In the latter model,
there is a broadcast channel to which a message sent is vis-
ible to all sites. Note that both models abstract away is-
sues of message delay, synchronization and loss and assume
that each message is delivered immediately. These assump-
tions can be removed by using standard techniques of times-
tamping, acknowledgements and re-sending, respectively.
We measure communication costs in terms of the total num-
ber of bits communicated.

Unfortunately, existing graph clustering algorithms can-
not work reasonably well for the problem we considered. In
order to show the challenge, we discuss two natural meth-
ods central (CNTRL) and static (ST). For every time point
in [1, t], CNTRL centralizes all graph updates that are dis-
tributively arriving and then applies any centralized graph
clustering algorithm. However, the total communication cost
Õ(m) for CNTRL is very high, especially when the number
m of edges is very large. On the other hand, for every time
point in [1, t], ST applies any distributed static graph cluster-
ing algorithm on the current graph and thus adapt it to dis-
tributed dynamic setting. According to (Chen et al. 2016),
the lower bounds on communication cost for distributed

graph clustering in the message passing and the blackboard
models are Ω(ns) and Ω(n + s), respectively, where n is
the number of nodes in the graph and s is the number of
sites. Summing over t time points, the total communication
cost for ST are Ω(nst) and Ω(nt+ st) resp., which could be
very high especially when t is very large. Therefore, design-
ing new algorithms for distributed dynamic graph clustering
is significant and challenging because of the scarce of any
valid algorithms.

Contribution. The contribution of our work are summarized
as follows.

• For the message passing model, we analyze the problem of
ST and propose an algorithm framework namely Distributed
Dynamic Clustering Algorithm with Monotonicity Property
(D2-CAMP), which can significantly reduce the total com-
munication cost to Õ(ns), for an n-node graph distribu-
tively observed at s sites in a time interval [1, t]. Any spec-
tral sparsification algorithms (we will formally introduce in
Sec. 2) satisfying the monotonicity property can be used in
D2-CAMP to achieve the communicaiton cost.

• We propose an algorithm namely Distributed Dynamic Clus-
tering Algorithm for the BLackboard model (D2-CABL)
with communication cost Õ(n + s) by adapting the spec-
tral sparsification algorithm (Cohen, Musco, and Pachocki
2016). D2-CABL is also a new static distributed graph clus-
tering algorithm with nearly-optimal communication cost,
the same as the iterative sampling approach (Li, Miller, and
Peng 2013) based state of the art (Chen et al. 2016). How-
ever, it is much simpler and also works for the more compli-
cated distributed dynamic setting.

• More importantly, we show that the communication costs of
D2-CAMP and D2-CABL match their lower bounds Ω(ns)
and Ω(n + s) up to polylogarithmic factors, respectively.
And then we prove that at every time point, D2-CAMP and
D2-CABL can generate clustering results of quality nearly as
good as CNTRL.

• Finally, we have conducted extensive experiments on both
synthetic and real-world networks to compare D2-CAMP
and D2-CABL with CNTRL and ST, which shows that our
algorithms can achieve communication cost significantly
smaller than these baselines, while generating nearly the
same clustering results.

Related Work. Geometric clustering has been studied by
(Cormode, Muthukrishnan, and Wei 2007) in the distributed
dynamic setting. They presented an algorithm for k-center
clustering with theoretical bounds on the clustering qual-
ity and the communication cost. However, it is not for the
graph clustering. There have been extensive research on
graph clustering in the distributed setting (Hui et al. 2007;
Yang and Xu 2015; Chen et al. 2016; Sun and Zanetti 2017)
where the graph is static (does not change over time) but
distributed. (Yang and Xu 2015) proposed a divide and con-
quer method for distributed graph clustering. (Chen et al.
2016) used spectral sparsifiers in graph clustering for two
distributed communication models to reduce communica-
tion cost. (Sun and Zanetti 2017) presented a node degree



based sampling scheme for distributed graph clustering, and
their method does not need to compute approximate effec-
tive resistance. However, as discussed earlier, all these meth-
ods suffer from very high communication costs, depending
on the time duration, and thus cannot be used in the studied
dynamic distributed clustering. Independently, (Jian, Lian,
and Chen 2018) studied distributed community detection
on dynamic social networks. However, their algorithm is
not optimized for communication cost, focusing on finding
overlapping clusters and only accepts unweighted graphs. In
contrast, our algorithms are optimized for communication
cost. They can generate non-overlapping clusters and pro-
cess both weighted and unweighted graphs.

2 The Proposed Algorithms
We first introduce spectral sparsification that we will use
in subsequent algorithm design. Recall that the message
passing communication model represents distributed sys-
tems with point-to-point communication, while the black-
board model represents distributed systems with a broadcast
channel, which can be used to broadcast a message to all
sites. We then propose two algorithms for different practical
scenarios in Sec. 2.1 and 2.2, respectively.

Graph Sparsification. In this paper, we consider weighted
undirected graphs G(V,E,W ) and will use n and m to
denote the numbers of nodes and edges in G respectively.
Graph sparsification is the procedure of constructing sparse
subgraphs of the original graphs such that certain important
property of the original graphs are well approximated. For
instance, a subgraph H(V,E′ ⊆ E) is called a spanner of
G if for every u, v ∈ V , the shortest distance between u and
v is at most α ≥ 1 times of their distance in G (Peleg and
Schaffer 1989). Let AG be the adjacency matrix of G. That
is, (AG)u,v = W (u, v) if (u, v) ∈ E and zero otherwise.
Let DG be the degree matrix of G defined as (DG)u,v =∑
v∈V W (u, v), and zero otherwise. Then the unnormalized

Laplacian matrix and normalized Laplacian matrix of G are
defined as LG = DG − AG and LG = D

−1/2
G LGD

−1/2
G ,

resp.. (Spielman and Teng 2011) introduced spectral spar-
sification: a (1 + ε)-spectral sparsifier for G is a sub-
graph H of G, such that for every x ∈ Rn, the inequality
(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx holds. There is
a rich literature on improving the trade-off between the size
of spectral sparsifiers and the construction time, e.g. (Spiel-
man and Srivastava 2011; Zhu, Liao, and Orecchia 2015;
Lee and Sun 2017). Recently, (Lee and Sun 2017) proposed
the state-of-the-art algorithm to construct a (1 + ε)-spectral
sparsifier of optimal size O(n/ε2) (up to a constant factor)
in nearly linear time Õ(m).

2.1 The Message Passing Model
Because spectral sparsifiers have much fewer edges than the
original graphs but can preserve cut-based clustering and
spectrum information of the original graphs (Spielman and
Srivastava 2011), we propose an algorithm framework as
follows. At each time point τ , each site Si first constructs
a spectral sparsifier Hτ

i for the local graph Gτi (V,Eτi ), and

then transmits the much smaller Hτ
i , instead of Gτi itself,

to the coordinator. Upon receiving the spectral sparsifier Hτ
i

from every site at the time τ , the coordinator first takes their
union Hτ = ∪si=1H

τ
i and then applies a standard central-

ized graph clustering algorithm, e.g., the spectral clustering
algorithm (Ng, Jordan, and Weiss 2001), on Hτ to get the
clusteringCτ . This process is repeated at the next time point
τ + 1 to get the clustering Cτ+1 until t.

However, simply re-constructing spectral sparsifiers from
scratch at every time point does not provide any bound on
the size of the updates to the previous spectral sparsifiers
Hτ−1
i for obtainingHτ

i at every time point τ , and thus needs
to communicate the entire spectral sparsifiers Hτ

i of size
O(n) at every time point τ . Summing over all s sites and
all t time points, the total communication cost is Õ(nst).

It is natural to consider algorithms for dynamically main-
taining spectral sparsifiers in dynamic computational models
(Abraham et al. 2016; Kelner and Levin 2013; Kapralov et
al. 2014). Unfortunately, applying them also does not pro-
vide such a bound, incurring the same communication cost!
To see this, the key of (algorithms in) dynamic computa-
tional models is a data structure for dynamically maintaining
the result of a computation while the underlying input data
is updated periodically. For instance, dynamic algorithms
(Abraham et al. 2016), after each update to the input data,
are allowed to process the update to compute the new re-
sult within a fast time; online algorithms (Kelner and Levin
2013) allow to process the input data that are revealed step
by step; and streaming algorithms (Kapralov et al. 2014) im-
pose a space constraint while processing the input data that
are revealed step by step. The main principle of all these
computational models is on efficiently processing the dy-
namically changing input data, instead of bounding the size
of the updates to the previous output result over time.

We define a new type of spectral sparsification algorithms,
which can provide such a bound, and is defined as follows.
Definition 1. For an n-node graphG(V,E={e1, · · · , em}),
let G(V,Ei={e1, · · · , ei}) be the graph consisting of the
first i edges. A spectral sparsification algorithm is called a
Spectral Sparsification Algorithm with Monotonicity Prop-
erty (S2AMP), if the spectral sparsifers H1, · · · , Hm, con-
structed for G1, · · · , Gm, respectively, satisfy that (1) H1 ⊆
· · · ⊆ Hm; and (2) Hm has size Õ(n).

We show that, by using any S2AMP in the algorithm
framework mentioned above, we can reduce the total com-
munication cost from Õ(nst) to Õ(ns), removing a factor
of t. We refer to the resultant algorithm framework as Dis-
tributed Dynamic Clustering Algorithm with Monotonicity
Property (D2-CAMP). The intuition for the significant re-
duction in the total communication cost is that, the mono-
tonicity property guarantees that, for every time point τ ∈
[1, t], the constructed spectral sparsifiers Hτ

i is a superset of
Hτ−1
i at the previous time point τ − 1. Then, we only need

to transmit edges inHτ
i and at the same time not inHτ−1

i to
the coordinator for maintaining Hτ

i . Every communicated
bit transmitted at the time point t is used at all subsequent
time points {τ + 1, · · · , t}, and thus no communication is
“wasted”. Furthermore, we show that by only switching an



arbitrary spectral sparsification algorithm to S2AMP, the to-
tal communication cost Õ(ns) achieved has been optimal,
up to a polylogarithmic factor. That is, we cannot design an-
other algorithm with communication cost smaller than D2-
CAMP by a polylogarithmic factor.

We summarize the results in Theorem 3. For every
node set S ⊆ V in G, let its volume and conduc-
tance be volG(S) =

∑
u∈S,v∈V W (u, v) and φG(S) =

(
∑
u∈S,v∈V−SW (u, v))/volG(S), respectively. Intuitively,

a small value of conductance φ(S) implies that nodes in
S are likely to form a cluster. A collection of subsets
A1, · · · , Ak of nodes is called a (k-way) partition of G
if (1) Ai ∩ Aj = ∅ for 1 ≤ i 6= j ≤ k; and (2)
∪ki=1Ai = V . The k-way expansion constant is defined as
ρ(k) = minpartitionA1,··· ,Ak maxi∈[1,k] φ(Ai). The eigen-
values of LG are denoted as λ1(LG) ≤ · · · ≤ λn(LG).
The high-order Cheeger inequality shows that λk/2 ≤
ρ(k) ≤ O(k2)

√
λk (Lee, Gharan, and Trevisan 2014). A

lower bound on ΥG(k) = λk+1/ρ(k) implies that,G has ex-
actly k well-defined clusters (Peng, Sun, and Zanetti 2015).
It is because a large gap between λk+1 and ρ(k) guaran-
tees the existence of a k-way partition A1, · · · , Ak with
bounded φ(Ai) ≤ ρ(k), and that any (k + 1)-way partition
A1, · · · , Ak+1 contains a subsetAi with significantly higher
conductance ρ(k + 1) ≥ λk+1/2 compared with ρ(k). For
any two sets X and Y , the symmetric difference of X and
Y is defined as X∆Y = (X − Y ) ∪ (Y − X). To prove
Theorem 3, we will use the following lemma and theorems.

Lemma 1. (Chen et al. 2016) Let H be a (1 + ε)-spectral
sparsifier of G(V,E) for some ε ≤ 1/3. For all node sets
S ⊆ V , the inequality 0.5 · φG(S) ≤ φH(S) ≤ 2 · φG(S)
holds.

Theorem 1. (Chen et al. 2016) Let G be an n-node graph
and the edges of G are distributed amongst s sites. Any al-
gorithm that correctly outputs a constant fraction of each
cluster in G requires Ω(ns) bits of communications.

Theorem 2. (Peng, Sun, and Zanetti 2015) Given a graphG
with ΥG(k) = Ω(k3) and an optimal partition S1, · · · , Sk
achieving ρ(k) for some positive integer k, the spectral
clustering algorithm can output partition A1, · · · , Ak such
that, for every i ∈ [1, k], the inequality vol(Ai∆Si) =
O(k3Υ−1vol(Si)) holds.

Theorem 3 (The Message Passing model). For every time
point τ ∈ [1, t], suppose that Gτ satisfies that Υ(k) =
Ω(k3) and there is an optimal partition P1, · · · , Pk which
achieves ρ(k) for some positive integer k, D2-CAMP can
output partitionA1, · · · , Ak at the coordinator such that for
every i ∈ [1, k], vol(Ai∆Pi) = O(k3Υ−1vol(Pi)) holds.
Summing over all t time points, the total communication cost
is Õ(ns). It is optimal up to a polylogarithmic factor.

Proof. We start by proving that for every time point τ ∈
[1, t], the structure Hτ constructed at the coordinator is a
(1 + ε)-spectral sparsifier of the graph Gτ received up to
the time point t. By the monotonicity property of a S2AMP,
for every i ∈ [1, s], Hτ

i is a (1 + ε)-spectral sparsifier of

the graph Gτi (V,Eτi ). The decomposability of spectral spar-
sifiers states that the union of spectral sparisifiers of some
graphs is a spectral sparsifier for the union of the graphs
(Sun and Zanetti 2017). Then by this property, the union of
Hτ = ∪si=1H

τ
i obtained at the coordinator is a (1 + ε)-

spectral sparsifier of the graph Gτ = ∪si=1G
τ
i .

Now we prove that for every time point τ ∈ [1, t],
if Gτ satisfies that ΥGτ (k) = Ω(k3), Hτ also satisfies
that ΥHτ (k) = Ω(k3). By the definition of Υ, it suffices
to prove that ρHτ (k) = Θ(ρHτ (k)) and λk+1(LHτ ) =
Θ(λk+1(LGτ )). The former follows from that for every
i ∈ [1, k], the inequality

0.5 · φGτ (Si) ≤ φHτ (Si) ≤ 2 · φGτ (Si)

holds, according to Lemma 1. According to the definition of
(1+ε)-spectral sparsifier and simple math, it holds for every
vector x ∈ Rn that

(1− ε)xTD−1/2Gτ LGτD
−1/2
Gτ x ≤ xTD−1/2Gτ LHτD

−1/2
Gτ x

≤ (1 + ε)xTD
−1/2
Gτ LGτD

−1/2
Gτ x.

By the definition of normalized graph Laplacian LG, and the
fact that for every vector y ∈ Rn,

0.5 · yTD−1Gτ y ≤ y
TD−1Hτ y ≤ 2yTD−1Gτ y,

we have that for every i ∈ [1, n],

λi(LHτ ) = Θ(λi(LGτ )),

which implies that λk+1(LHτ ) = Θ(λk+1(LGτ )). Then we
can apply the spectral clustering algorithm on Hτ to get the
desirable properties, according to Theorem 2.

For the upper bound on the communication cost, by the
monotonicity property of a S2AMP, each site only needs to
transmit Õ(n) number of edges over all t time points. Sum-
ming over all s sites, the total communication cost is Õ(ns).

For the lower bound, we show the following statement.
For every time point τ ∈ [1, t], suppose Gτ satisfies that
Υ(k) = Ω(k3) and there is an optimal partition P1, · · · , Pk
which achieves ρ(k) for positive integer k, in the mes-
sage passing model there is an algorithm which can output
A1, · · · , Ak at the coordinator, such that for every i ∈ [1, k],
vol(Ai∆Pi) = Θ(vol(Pi)) holds. Then the algorithm re-
quires Ω(ns) total communication cost over t time points.

Consider any time point τ . We assume by contradiction
that there exists an algorithm which can output A1, · · · , Ak
in Gτ at the coordinator, such that for every i ∈ [1, k],
vol(Ai∆Pi) = Θ(vol(Pi)) holds, using o(ns) bits of com-
munications. Then the algorithm can be used to solve a cor-
responding graph clustering problem in the distributed but
static setting using o(ns) bits of communications. This con-
tradicts Theorem 1, and then completes the proof.

Combining Theorems 2 and 3, D2-CAMP could generate
clustering of quality asymptotically the same as CNTRL. We
stress that the monotonicity property in general can be help-
ful for improving the communication efficiency over dis-
tributed dynamic graphs. In Sec. 3, we will discuss a new
application which also benefits from the property.



As mentioned earlier, any S2AMP algorithm can be
plugged in D2-CAMP, e.g., the online sampling technique
(Cohen, Musco, and Pachocki 2016). But the resultant al-
gorithm becomes a randomized algorithm which succeeds
w.h.p. because the constructed subgraphs are spectral spar-
sifiers w.h.p. Another S2AMP algorithm is the online-BSS
algorithm (Baston, Spielman, and Srivastava 2012; Cohen,
Musco, and Pachocki 2016), which has a slightly smaller
communication cost (by a logarithmic factor) but requires
larger memory and is more complicated.

2.2 The Blackboard Model
How to efficiently exploit the broadcast channel in the
blackboard model to reduce the communication complexity
in distributed graph clustering is non-trivial. For example,
(Chen et al. 2016) proposed to construct O(log n) spectral
sparisifers as a chain in the blackboard based on the itera-
tive sampling technique (Li, Miller, and Peng 2013). Each
spectral sparsifier in the chain is a spectral sparsifer of its
following sparsifier. However, the technique fails to extend
to the dynamic setting, as each graph update could incur a
large number of updates in the maintained spectral sparsi-
fiers, especially for those in the latter part of the chain.

We propose a simple algorithm called Distributed Dy-
namic Clustering Algorithm for the BLackboard model (D2-
CABL), based on adapting Cohen et al.’s algorithm (Cohen,
Musco, and Pachocki 2016). The basic idea is that every site
corporates with each other to construct a spectral sparsifier
Hτ for Gτ (V,Eτ ) at each time point τ in the blackboard.

Algorithm 1: D2-CABL at Time Point τ

Input: The incidence matrix Bτ−1, new edges Êτ
coming at τ , δ > 0, ε ∈ (0, 1/3)

Output: The incidence matrix Bτ
1 λ← δ/ε; c← 8 log n/ε2;
2 B′ ← Bτ−1;
3 for e ∈ Êτ do
4 l = (1 + ε)b(e)T (B′TB′ + (δ/ε)I)−1b(e);
5 p← min{cl, 1};
6 B′ ← [B′; b(e)/

√
p] with probability p;

7 end
8 return Bτ ← B′;

The edge-node incidence matrix Bm×n of G is defined
as B(e, v) = 1 if v is e’s head, B(e, v) = −1 if v is
e’s tail, and zero otherwise. At the beginning, the param-
eters δ and ε of the algorithm are set by a distinguished
site and then sent to every site, and the blackboard has an
empty spectral sparsifier H0, or equivalently an empty in-
cidence matrix B0 of dimension 0 × n. Consider the time
point τ . Suppose that at the previous time point τ − 1, the
incidence matrixBτ−1 forHτ−1 was in the blackboard. For
each newly observed edge e ∈ Êτ at the time point τ , the
site Si observing e computes the online ridge leverage score
l = (1 + ε)b(e)T (B′TB′ + (δ/ε)I)−1b(e) by accessing the
incidence matrix B′ currently in the blackboard, where b(e)
is an n-dimensional vector with all zeroes except that the
entries corresponding to e’s head and tail are 1 and -1, resp..

Let the sampling probability p = min{(8 log n/ε2)l, 1}.
With probability p, e is sampled, or discarded otherwise. If e
is sampled, the site Si transmits the rescaled vector b(e)/

√
p

corresponding to e to the blackboard to append it at the end
of B′. After all the newly observed edges Êτ at the time
point τ at all the sites are processed,Bτ forHτ will be in the
blackboard. Then the coordinator applies any standard graph
clustering algorithm, e.g. (Ng, Jordan, and Weiss 2001), on
Hτ to get the clustering Cτ . The process is repeated for ev-
ery subsequent time point until t. The algorithm is summa-
rized in Alg. 1.

Our results for the blackboard model are summarized in
Theorem 4. To prove Theorem 4, first it follows from (Co-
hen, Musco, and Pachocki 2016) that the constructed sub-
graph in the blackboard for every time point τ is a spectral
sparsifier for the graph Gτ w.h.p.. Then the rest of the proof
is the same as the proof of Theorem 3. In the algorithm, pro-
cessing an edge requires only B′, which is in the blackboard
and visible to every site. Therefore, each site can process
its edges locally and only transmit the sampled edges to the
blackboard. The total communication cost is Õ(n + s), be-
cause the size of the constructed spectral sparsifier is Õ(n)
and each site has to transmit at least one bit of information. It
is easy to see this communication cost is optimal up to poly-
logarithmic factors, because even only for one time point,
the clustering result itself has Ω(n) bits of information and
each site has to transmit at least one bit of information.

Theorem 4 (The Blackboard model). For every time point
τ ∈ [1, t], suppose that Gτ satisfies that Υ(k) = Ω(k3)
and there is an optimal partition P1, · · · , Pk which achieves
ρ(k) for some positive integer k, w.h.p. D2-CABL can out-
put partition A1, · · · , Ak at the coordinator such that for
every i ∈ [1, k], vol(Ai∆Pi) = O(k3Υ−1vol(Pi)) holds.
Summing over t time points, the total communication cost is
Õ(n+ s). It is optimal up to a polylogarithmic factor.

D2-CABL can also work in the distributed static setting
by considering that there is only one time point, at which all
graph information comes together. As mentioned earlier, it is
a brand new algorithm with nearly-optimal communication
complexity, the same as the state-of-the-art algorithm (Chen
et al. 2016). But our algorithm is much simpler without hav-
ing to maintain a chain of spectral sparsifiers. Another ad-
vantage is the simplicity that one algorithm works for both
distributed settings. The computational complexity for com-
puting the online ridge leverage score for each edge in Alg.
1 is O(n2m). To save computational cost, we can batch pro-
cess in every site new edges Êτi observed at each time point
τ in a batch of O(n). By using the Johnson-Linderstrauss
random projection trick (Spielman and Srivastava 2011), we
can approximate online ridge leverage scores for a batch of
O(n) edges in Õ(n logm) = Õ(n) time, and then sample
all edges together according to the computed scores.

3 Discussions
Another Application of the Monotonicity Property. Con-
sider the same computational and communication models.



When the queries posed at the coordinator are changed to ap-
proximate shortest path distance queries between two given
nodes, we use graph spanners (Peleg and Schaffer 1989;
Althofer et al. 1993) to sparsify the original graphs while
well approximating all-pair shortest path distances in the
original graphs.

We now describe the algorithm. In the message passing
model, at each time point t each site Si first constructs a
graph spanner Qτi of the local graph Gτi (V,Eτi ) using a
D2-CAMP for constructing graph spanners (Elkin 2011),
and then transmits Qτi to the coordinator. Upon receiving
Qτi from every site, the coordinator first takes their union
Qτ = ∪si=1Q

τ
i and then applies a point-to-point shortest

path algorithm (e.g., Dijkstra’s algorithm (Dijkstra 1959))
on Qτ to get the shortest distance between the two nodes at
the time point τ . This process is repeated for every τ ∈ [1, t].
The theoretical guarantees of the algorithm are summarized
in Theorem 5, and its proof is in Sec. 3 of Appendix.

Theorem 5. Given two nodes u, v ∈ V and an integer k >
1, for every time point τ ∈ [1, t], the proposed algorithm
can answer approximate shortest distance between u and v
in Gτ no larger than 2k − 1 times of their actual shortest
distance at the coordinator in the message passing model.
Summing over t time points, the total communication cost is
Õ(n1+1/ks).

Dynamic Graph Streams. When the graph update stream
observed at each site is a fully dynamic stream containing
a small number of node/edge deletions, we present a simple
trick which enables that our algorithms still have good per-
formance. We observe that the spectral sparsifiers can prob-
ably keep unchanged, when there is only a small number of
deletions. This is reasonable because spectral sparsifiers are
sparse subgraphs which could contain much smaller edges
than the original graphs. When the number of deletions is
small, the deletions may not affect the spectral sparsifiers
at all. Even when the deletions lead to small changes in
the spectral sparsifiers, there is a high probability that the
clustering is not changed significantly. Therefore, in order
to save communication and computation, we can ignore and
do not process or transmit these deletions while still approxi-
mately preserving the clustering. We experimentally confirm
the effects of this thick in the experiment section.

4 Experiments
In this section, we present the experimental results that we
conducted on both synthetic and real-life datasets, where we
compared the proposed algorithms D2-CAMP and D2-CABL
with baseline algorithms CNTRL and ST. For ST, we used
the distributed static graph clustering algorithms (Chen et
al. 2016) in the message passing and the blackboard mod-
els, and refer the resultant algorithms as STMP and STBL,
respectively. For measuring the quality of the clustering re-
sults, we used the normalized cut value (NCut) of the clus-
tering (Sun and Zanetti 2017). A smaller value of NCut im-
plies a better clustering while a larger value of NCut implies
a worse clustering. For simplicity, we used the total number
of edges communicated as the communication cost, which

Time s
Gaussians Gaussians Sculpture Sculpture
D2-CAMP D2-CABL D2-CAMP D2-CABL

50

15 4485 3132 15292 7130
30 4607 3133 15235 6054
45 4660 3126 15560 6076
60 4669 3095 15764 6705

90

15 7342 4988 27036 12153
30 7533 4982 27020 10287
45 7586 4979 27700 10336
60 7630 4960 28001 11421

100

15 7748 5238 28408 12846
30 7988 5230 28338 10874
45 7998 5235 29038 10897
60 8062 5218 29343 12062

Table 1: Communication cost with varied values of s

approximates the total number of bits by a logarithmic fac-
tor. We implemented all five algorithms in Matlab programs,
and conducted the experiments on a machine equipped with
Intel i7 7700 2.8GHz CPU, 8G RAM and 1T disk storage.

The details of the datasets we used in the experiments are
described as follows. The Gaussians dataset consists of 800
nodes and 47,897 edges. Each point from each of four clus-
ters is sampled from an isotropic Gaussians of variance 0.01.
We consider each point to be a node in constructing the sim-
ilarity graph. For every two nodes u and v such that one is
among the 100-nearest points of the other, we add an edge
of weight W (u, v) = exp{−||u − v||22/2σ2} with σ = 1.
The number k of clusters is 4. For the Sculpture dataset, we
used a 22× 30 version of a photo of The Greek Slave2, and
it contains 1980 nodes and 61,452 edges. We consider each
pixel to be a node by mapping each pixel to a point inR5, i.e.
(x, y, r, g, b), where the last three coordinates are the RGB
values. For every two nodes u and v such that u (v) is among
the 80-nearest points of v (u), we add an edge of weight
W (u, v) = exp{−||u − v||22/2σ2} with σ = 20. The num-
ber k of clusters is 3.

In the problem studied, the site and the time point each
edge comes is arbitrary. Therefore, we make that the edges
of nodes with smaller x coordinates have smaller arrival
times than the edges of nodes with larger x coordinates. In-
tuitively, this results in that the edges of nodes on the left
side come before the edges of nodes on the right side. This
helps us to easily monitor the changing of the clustering re-
sults. Independently, the site every edge comes is randomly
picked from the interval [1, s].
Experimental Results. As the baseline setting, we selected
the total number of time points t = 10 and the total num-
ber of sites s = 30. The communication cost and NCut of
different algorithms on both datasets are shown in Fig. 1.
On both datasets, the communication cost of D2-CAMP and
D2-CABL are much smaller than CNTRL, STMP and STBL.
Specifically, on Gaussians dataset, the communication cost
of D2-CAMP can be only 4% of that of STMP and on aver-
age 16% of that of CNTRL. The communication cost of D2-
CABL is on average 11% of CNTRL and can be only 12%
of that of STBL. STMP has communication cost even much

2http://artgallery.yale.edu/collections/objects/14794
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Figure 2: Communication cost, NCut and clustering results in the baseline setting

Time t
Gaussians Gaussians Sculpture Sculpture
D2-CAMP D2-CABL D2-CAMP D2-CABL

50%

10 4562 3127 15078 5998
30 4645 3126 15278 6063

100 4607 3133 15235 6054
300 4620 3113 15269 6064

90%

10 7467 4979 26699 10202
30 7581 4983 27012 10278

100 7533 4982 27020 10287
300 7618 4958 27042 10299

100%

10 7917 5225 28046 10779
30 8045 5234 28278 10847

100 7988 5230 28338 10874
300 8031 5211 28345 10869

Table 2: Communication cost with varied values of t

larger than CNTRL. D2-CABL has a smaller communication
cost than D2-CAMP. On Sculpture dataset, the communica-
tion cost of D2-CAMP can be only 11% of that of STMP and
is on average 49% of that of CNTRL. The communication
cost of D2-CABL can be only 15% of that of STBL and is on
average 21% of that of CNTRL. Similar to STMP, STBL also
has communication cost larger than CNTRL. D2-CABL has
a much smaller communication cost than D2-CAMP and the
difference here is larger than in Gaussians dataset.

For both datasets, all algorithms have comparable NCut
at every time point, except that on Gaussians dataset, at
the time point 9, D2-CABL has a slightly larger NCut. This
could be due to that D2-CABL is a randomized algorithm
with high success probability. In Fig. 1(e-l), the clustering
results of CNTRL and D2-CAMP on both datasets at time
points 9 and 10 are visually very similar. (The same clus-
ter colors in different figures do not have relation.) But for

Sculpture dataset at the time point 9, the clustering result of
D2-CAMP visually looks even more reasonable.

We then varied the value of s from 15 to 60 with a step
of 15 or the value of t from 10 to 300 with a factor of
3 while keeping the other parameters unchanged as in the
baseline setting. Due to limit of space, we only show the
resultant communication cost of D2-CAMP and D2-CABL
on both datasets in Tables 1 and 2. But the complete results
are referred to Appendix. When we varied the value of s, the
communication cost of D2-CAMP increases roughly linearly
with the increase of the value of s from 15 to 60, while that
of D2-CABL do not obviously increase with the value of s.
These observations are consistent with their theoretical com-
munication cost Õ(ns) and Õ(n + s), respectively. When
we varied the value of t, both the communication cost of
D2-CAMP and D2-CABL roughly keep the same, also sup-
porting our theory above.

Finally, we tested the performance of D2-CAMP and D2-
CABL for dynamic graph streams. We randomly chose 5% of
edges to delete at a random time point after their arrival. This
increases the communicate cost of CNTRL by 5% as CNTRL
sends every deletion to the coordinator/blackboard. How-
ever, the communication cost of D2-CAMP and D2-CABL
are not changed. More importantly, even ignoring the dele-
tions, the resultant clusterings of D2-CAMP and D2-CABL at
every time point have NCut comparable to that of CNTRL.
Due to limit of space, we refer to Fig. 1 in Appendix.

5 Conclusion and Future Work
In this paper, we study the problem of how to efficiently
perform graph clustering over modern graph data that are
often dynamic and collected at distributed sites. We de-



sign communication-optimal algorithms D2-CAMP and D2-
CABL for two different communication models and prove
their optimality rigorously. Finally, we conducted extensive
simulations to confirm that D2-CAMP and D2-CABL signif-
icantly outperform baseline algorithms in practice. As the
future work, we will study whether and how we can achieve
similar results for geometric clustering, and how to achieve
better computational bounds for the studied problems. We
will also study other related problems in the distributed
dynamic setting such as low-rank approximation (Bring-
mann, Kolev, and Woodruff 2017), source-wise and stan-
dard round-trip spanner constructions (Zhu and Lam 2017;
2018) and cut sparsifier constructions (Abraham et al. 2016).
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Appendix
1 The Complete Results when varying the

value of s and t
The results of communication cost and normalized cut
(NCut) at every time point τ ∈ [1, t] when varying the value
of s on the Gaussians dataset and the Sculpture dataset are
presented in Tables 1 and 2, respectively. Basically, the com-
munication cost increases linearly with respect to s for D2-
CAMP. The increase for D2-CABL are not obvious. The re-
sults of communication cost and normalized cut (NCut) at
every time point that is a multiple of 10% of the total number
of time points when varying the value of t on the Gaussians
dataset and the Sculpture dataset are presented in Tables 3
and 4, respectively. The communication costs roughly keep
unchanged for D2-CAMP and D2-CABL. In all the tables, the
NCut for different algorithms are comparably, except some
rare cases when any algorithm do not succeed.

2 The Complete Results for Dynamic Graph
Streams

The complete results of communication cost and NCut un-
der dynamic graph stream on the Gaussians and Sculpture
datasets are plotted in Fig. 1. It can be seen that even though
D2-CAMP and D2-CABL do not process the deletions, their
NCut remains comparable to that of CNTRL. The communi-
cation cost can be saved by this trick, keeping much smaller
than the communication cost of CNTRL.

3 Proof of Theorem 5
Theorem 5. Given two nodes u, v ∈ V and an integer k >
1, for every time point τ ∈ [1, t], the proposed algorithm
can answer approximate shortest distance between u and v
in Gτ no larger than 2k − 1 times of their actual shortest
distance at the coordinator in the message passing model.
Summing over t time points, the total communication cost is
Õ(n1+1/ks).

Proof. We first prove that at every time τ , the constructed
subgraph Qτ = ∪ii=1Q

τ
i is a (2k − 1)-spanner of the graph

Gτ = ∪ii=1G
τ
i received up to the time point τ . For each edge

e = (u, v) ∈ Eτi , there is a path P between u and v in the
spannerQτi of distance no larger than (2k−1)W (e), because
Qτi is a (2k − 1)-spanner of Gτi (V,Eτi ). Then in the union
graph Qτ = ∪ii=1Q

τ
i , the path P is still presented. There-

fore, for every edge e(u, v) in Gτ , there is a path between
u and v in Qτ with distance no larger than (2k − 1)W (e).
This implies that Qτ is a (2k − 1)-spanner of Gτ .

By the monotonicity property, each site only needs
to transmit Õ(n1+1/k) summing over all t time points.
Summing over s sites, the total communication cost is
Õ(n1+1/ks).
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Figure 1: The Complete Results for Dynamic Graph Streams (t = 100 and s = 30)



Table 1: NCut and communication cost with varied values of s on Gaussians dataset

Time s
CNTRL CNTRL D2-CAMP D2-CAMP D2-CABL D2-CABL
NCut Comm. NCut Comm. NCut Comm.

10

15

2.941 6556

2.862 1025 2.953 784
30 2.921 1067 2.839 784
45 2.869 1083 2.913 772
60 2.96 1050 2.843 791

20

15

2.918 11265

2.954 1784 2.923 1275
30 2.954 1886 2.88 1284
45 2.918 1916 2.881 1281
60 2.982 1872 2.853 1263

30

15

2.729 15872

2.855 2533 2.931 1800
30 2.842 2651 2.932 1804
45 2.93 2707 2.787 1831
60 2.896 2612 2.905 1802

40

15

2.744 21802

2.91 3510 2.707 2510
30 2.854 3643 2.939 2500
45 2.961 3698 2.886 2505
60 2.856 3632 2.822 2481

50

15

2.721 27748

2.763 4485 2.87 3132
30 2.897 4607 2.909 3133
45 2.748 4660 2.758 3126
60 2.753 4669 2.814 3095

60

15

2.712 32649

2.841 5297 2.785 3623
30 2.829 5407 2.704 3623
45 2.829 5473 2.866 3602
60 2.651 5497 2.914 3597

70

15

2.846 35976

2.853 5863 2.908 3959
30 2.868 6003 2.743 3972
45 2.707 6020 2.681 3956
60 2.855 6086 2.823 3911

80

15

2.794 39445

2.847 6430 2.854 4372
30 2.766 6592 2.932 4377
45 2.804 6599 2.844 4346
60 2.875 6645 2.881 4312

90

15

0.198 45250

0.216 7342 0.206 4988
30 0.199 7533 0.22 4982
45 1.102 7586 0.224 4979
60 0.205 7630 0.207 4960

100

15

0.198 47897

0.208 7748 0.206 5238
30 0.2 7988 0.22 5230
45 0.206 7998 0.215 5235
60 0.205 8062 0.204 5218



Table 2: NCut and communication cost with varied values of s on Sculpture dataset

Time s
CNTRL CNTRL D2-CAMP D2-CAMP D2-CABL D2-CABL
NCut Comm. NCut Comm. NCut Comm.

10

15

1.874 5798

1.991 3210 1.973 1574
30 1.121 3145 1.984 1348
45 1.12 3254 1.883 1344
60 1.117 3263 1.963 1491

20

15

1.924 11792

1.971 6264 1.974 2928
30 0.466 6210 1.947 2507
45 0.475 6394 1.935 2511
60 1.102 6447 1.817 2785

30

15

1.698 18810

1.933 9503 1.846 4478
30 1.087 9421 1.843 3834
45 1.034 9659 1.988 3812
60 1.091 9787 1.955 4241

40

15

1.89 25388

1.845 12562 1.97 5856
30 0.434 12501 1.852 5019
45 0.235 12798 1.806 4982
60 0.23 12976 2.002 5546

50

15

1.927 31256

1.765 15292 1.804 7130
30 0.305 15235 1.788 6054
45 0.653 15560 1.678 6076
60 0.755 15764 1.965 6705

60

15

1.742 37954

1.745 18434 1.929 8500
30 1.079 18387 1.924 7233
45 1.983 18798 1.889 7234
60 1.043 19033 1.941 7997

70

15

1.949 44566

1.823 21436 1.952 9877
30 1.948 21421 1.726 8378
45 1.835 21888 1.911 8394
60 1.39 22156 1.939 9264

80

15

1.892 51437

0.086 24676 1.914 11329
30 1.856 24654 1.845 9598
45 1.56 25225 1.867 9633
60 1.848 25512 1.726 10647

90

15

1.945 56331

1.749 27036 1.779 12153
30 1.878 27020 1.825 10287
45 1.695 27700 1.906 10336
60 1.868 28001 1.774 11421

100

15

0.009 61452

0.01 28408 0.011 12846
30 0.009 28338 0.011 10874
45 0.009 29038 0.009 10897
60 0.013 29343 0.013 12062



Table 3: NCut and communication cost with varied values of t on Gaussians dataset

Time t
CNTRL CNTRL D2-CAMP D2-CAMP D2-CABL D2-CABL
NCut Comm. NCut Comm. NCut Comm.

10%

10

2.941 6556

2.869 1091 2.96 763
30 2.927 1148 2.882 790

100 2.921 1067 2.839 784
300 2.975 1152 2.806 725

20%

10

2.918 11265

2.965 1857 2.866 1253
30 2.822 1935 2.908 1261

100 2.954 1886 2.88 1284
300 2.979 1929 2.863 1189

30%

10

2.729 15872

2.788 2569 2.981 1820
30 2.868 2692 2.895 1816

100 2.842 2651 2.932 1804
300 2.926 2700 2.868 1709

40%

10

2.744 21802

2.91 3568 2.692 2521
30 2.832 3680 2.891 2516

100 2.854 3643 2.939 2500
300 2.834 3648 2.844 2438

50%

10

2.721 27748

2.945 4562 2.771 3127
30 2.797 4645 2.889 3126

100 2.897 4607 2.909 3133
300 2.883 4620 2.846 3113

60%

10

2.712 32649

2.904 5397 2.749 3616
30 2.861 5479 2.807 3616

100 2.829 5407 2.704 3623
300 2.706 5465 2.689 3599

70%

10

2.846 35976

2.821 5971 2.944 3948
30 2.855 6070 2.814 3953

100 2.868 6003 2.743 3972
300 2.825 6044 2.905 3913

80%

10

2.794 39445

2.749 6538 2.851 4348
30 2.876 6650 2.816 4346

100 2.766 6592 2.932 4377
300 2.829 6616 2.809 4316

90%

10

0.198 45250

0.209 7467 1.042 4979
30 1.033 7581 0.221 4983

100 0.199 7533 0.22 4982
300 1.039 7618 1.017 4958

100%

10

0.198 47897

0.205 7917 0.206 5225
30 0.204 8045 0.215 5234

100 0.2 7988 0.22 5230
300 0.202 8031 0.211 5211



Table 4: NCut and communication cost with varied values of t on Sculpture dataset

Time t
CNTRL CNTRL D2-CAMP D2-CAMP D2-CABL D2-CABL
NCut Comm. NCut Comm. NCut Comm.

10%

10

1.874 5798

1.106 3207 1.988 1361
30 1.121 3204 1.976 1341

100 1.121 3145 1.984 1348
300 1.115 3276 1.974 1360

20%

10

1.924 11792

1.092 6188 1.967 2486
30 0.463 6277 1.994 2540

100 0.466 6210 1.947 2507
300 1.088 6296 1.945 2497

30%

10

1.698 18810

0.283 9399 1.813 3804
30 0.977 9489 1.75 3865

100 1.087 9421 1.843 3834
300 1.104 9505 1.902 3861

40%

10

1.89 25388

0.232 12407 1.937 4952
30 0.571 12593 1.884 5045

100 0.434 12501 1.852 5019
300 0.239 12573 1.982 4997

50%

10

1.927 31256

0.448 15078 1.848 5998
30 0.2 15278 1.967 6063

100 0.305 15235 1.788 6054
300 0.562 15269 1.69 6064

60%

10

1.742 37954

1.079 18195 1.924 7139
30 0.93 18464 1.784 7201

100 1.079 18387 1.924 7233
300 0.952 18392 1.8 7221

70%

10

1.949 44566

1.942 21171 1.927 8289
30 1.957 21400 1.938 8330

100 1.948 21421 1.726 8378
300 1.934 21387 1.865 8377

80%

10

1.892 51437

1.904 24363 2.001 9496
30 1.73 24582 1.901 9566

100 1.856 24654 1.845 9598
300 1.839 24647 1.868 9609

90%

10

1.945 56331

1.902 26699 1.845 10202
30 1.941 27012 1.879 10278

100 1.878 27020 1.825 10287
300 1.911 27042 1.755 10299

100%

10

0.009 61452

0.011 28046 0.011 10779
30 0.011 28278 0.012 10847

100 0.009 28338 0.011 10874
300 0.01 28345 0.013 10869


